日前,2022年度北京市科学技术奖评选结果正式公布。其中,由胡长军教授团队完成的项目“材料辐照损伤高性能多尺度计算关键技术及应用”成功斩获北京市科学技术奖技术发明奖二等奖!
习近平总书记在2020年联合国大会上的讲话,正式确立了我国的“碳达峰”和“碳中和”目标。“双碳”目标是我国基于推动构建人类命运共同体的责任担当和实现可持续发展的内在要求而作出的重大战略决策,展示了我国为应对全球气候变化作出的新努力和新贡献。核能作为一种重要的战略能源,同时也是一种清洁能源,是实现国家“双碳”目标的重要途径之一。
核反应堆安全是核能发展的基础,核材料作为保障核反应堆安全的关键环节,其辐照性能一直是国内外研究热点。由于辐照实验难度大、周期长、成本昂贵,多尺度模拟结合少量实验成为研究核材料辐照损伤的主要手段。过去受计算能力和内存资源的制约,材料计算模拟的时空尺度、精度、确定性、可信性等与工程应用的需求还有很大的距离。
胡长军教授团队面向现役反应堆材料辐照性能预测及先进反应堆用材料研发的战略需求,瞄准国产超算环境下的“核材料辐照损伤”这一关键问题, 秉持“发挥超算优势、聚焦应用痛点、发展自主软件”的宗旨,十余年如一日,进行了大量的核材料辐照损伤大规模、高保真、多尺度模拟研究。团队将核材料多尺度计算需求与我国超算的算力优势相结合,深挖核材料在极端服役条件下的演化特点,发展了面向典型国产E级超算架构的材料辐照损伤多尺度计算方法,并构建了一整套材料辐照损伤高性能多尺度计算体系,突破了“平均场限制”、“多元体系协同演化”等技术难题,为多尺度计算提供了可靠的理论方法指导。进一步聚焦大规模复杂体系模拟的异构墙、存储墙、通信墙等问题,建立了一套以百/千万核级深度并行优化、多尺度耦合模拟为核心的E级超算材料辐照损伤多尺度模拟关键核心技术,大幅提高了原子与介观尺度模拟规模与计算精度,两次打破世界记录。最后,团队集成理论方法及关键技术的成果, 研发了跨越微、介观尺度的大规模并行模拟软件,并在应用中不断迭代升级软件,与国际同类软件对比,具有明显优势和特色。最终建成国内首个、国际领先的材料辐照损伤高性能多尺度计算框架MISA,基于该框架首次建立了RPV 钢辐照脆化的高性能多尺度计算体系,使得RPV 钢的寿命预测摆脱了多年基于经验的方式。
产–学–研–用,协同创新
胡长军教授团队经过十多年的“产、学、研、用”紧密结合和多学科联合攻关,在理论方法、关键技术和软件实现方面取得了系列创新成果。目前研究成果在服务国家重大工程、核材料辐照损伤机理认知和科学发现等方面获得重要应用,实现了VVER型和国产A508-III型RPV钢的辐照脆化机理认知和预测,应用于秦山、田湾等核电站的RPV钢预测评估,在核电站安全运行和延寿方面发挥了重要作用,弥补了工业软件短板。并且系列软件已全球开源并在中核、中广核、苏黎世联邦理工学院等50 多家国内外机构和企业获得推广应用,取得了良好的国内外影响和可观的经济效益。