2019年度

  1. Huang J, Tang Y, Hu Y, et al. Predicting the Active Period of Popularity Evolution: A Case Study on Twitter Hashtags [J]. Information Sciences, 2019. https://doi.org/10.1016/j.ins.2019.04.028
  2. Huang J, Li J, Chen Y, et al. Burst Hotspots Dynamic Detection and Tracking on Large-Scale Text Stream[J]. IEEE Access, 2019, 7: 30913-30924.https://doi.org/10.1109/ACCESS.2019.2903095
  3. Fang M, Li Y, Hu Y, et al. A Unified Semantic Model for Cross-Media Events Analysis in Online Social Networks[J]. IEEE Access, 2019, 7: 32166-32182.https://doi.org/10.1109/ACCESS.2019.2899989
  4. Wang Z , Wang Q , Zhu T , et al. Extending LINE for Network Embedding With Completely Imbalanced Labels[J]. International Journal of Data Warehousing and Mining, 2020, 16(3):20-36.https://doi.org/10.4018/IJDWM.2020070102

2018年度

  1. Fang M, Shi P, Shang W, et al. Locating the Source of Asynchronous Diffusion Process in Online Social Networks[J]. IEEE Access, 2018, 6: 17699-17710.https://doi.org/10.1109/ACCESS.2018.2817553
  2. Hu Y, Aiello M, Hu C, et al. Information diffusion in online social networks: A compilation[J]. Journal of Computational Science, 2018: 204-205. https://doi.org/10.1016/j.jocs.2018.08.010

2017年度

  1. Xu W, Shi P, Huang J, et al. Understanding and predicting the peak popularity of bursting hashtags[J]. Journal of Computational Science, 2017: 328-335.https://doi.org/10.1016/j.jocs.2017.10.017

Leave a Reply

Your email address will not be published.